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Abstract. Second-order phase transitions are studied for a biaxial anisotropic disordered
system composed of randomly distributed metal and non-metal regions, the former having
tensor-type conductivity along the principal axes. [ntegrals are derived for the anisotropic
Hall and Seebeck coefficients using Green functions. Computer calculations show that near
the percolation threshold, the decrease of the biaxial anisotropy of the effective conductivity
and Hall and Seebeck coefficients is described by new critical exponents. A model of ‘special
points” of the biaxial anisotropic infinite cluster above the threshold and the two-component
infinite cluster below the threshold is developed. ’

1. Introduction

This paper is a sequel to and a further development of Skal (1981a, b, 1982a, 1985, 1987)
and Skal et af {1982) dealing with percolation in isotropic and anisotropic media.

Natural uniaxial anisotropy isdemonstrated, for example, by alayered crystal similar
to graphite, or by quasi-one-dimensional crystals of the tetracyanoquinodimethane
(TeNQ) type. If there is a strong magnetic field along another axis, these crystals become
biaxial anisotropic ones.

Let usstart with a simple biaxial model of anisotropy and find cut what new exponents
result from it. A random two-component mixture has a geometrically isotropic dis-
tribution of components, one of which is characterized by the tensor

. 0 0
6,={0 o, 0 a=g9,/o, b=o0,/0, 0}
0 0 o,

and the other by the scalar ¢4, where a and b are the anisotropic parameters.
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Uniaxial anisotropic percolation was first studied by Shklovskii (1978) who used the
ssDG (Skal and Shklovskii 1974, De Gennes 1976) idealized superlattice model, with the
nodes connected by one-dimensional links, and introduced the critical exponent A:

_ 05a,p)

e o)

=1+ const(p —p,)* A=E-v», A=03 2)

where 0 (p) and ¢§( p) are the effective conductivities along the respective coordinate
axes, v is the exponent of the infinite cluster correlation radius, which is equal to the
distance between the superlattice nodes, and £ is the exponent of the one-dimensional
linksthat connect the superlattice nodes along the cluster. With the de Gennes postulated
value £ = 1for all dimensionalities, and with universally accepted v, = 1.3and v; = 0.8
onhe can obtain A, <0and 4; = 0.2 (here and below we use the subscripts according to
the dimensionality of the space). However, 4, <0 is not true because the anisotropic
effect decays at a faster rate than the conductivity: Vannimenus and Knezevic (1984)
obtained v,/4, = 0.306 and v;/A; = 0.3; Sarychev and Vinogradov (1983) found A, =
0.9 and A, = 0.3; Straley (1980) calculated A = 1 for the Cayley tree and A = 3 for a high-
dimensional limit; and Lobb ez af {1981) found »,/4; = 0.67.

If a tends to 1, then the left part of formulae (2) also tends to 1 but the second term
in the right part of (2) does not disappear and so it cannot be used for all values of a. Skal
(1987) suggested the existence of two universal curves that characterize the transition to
the quasi-one-dimensional f,(p) and the quasi-two-dimensional f,( p) states, each with
a critical exponent of its own:

f1(p) = 1+ const{p — p.)*» g~

Al = {fz(P) =1+const(p—p)'n  @=0

(3)
where A3, = 0.45 =+ 0.05 and A4, = 0.15 * 0.05 are the quasi-exponents of the quasi-one-
and two-dimensional transitions, respectively. The number of exponents increases with
dimensionality; for example, in two-dimensional systems there is only one exponent 4,.
Comparision of this result with other authors’ findings presents difficulties because the
data in the literature refer only to a single exponent in two and three dimensions.

2. Calculation of the anisotropic Hall coefficient

The formula for the Hall coefficient in an isotropic disordered system was obtained by
Skal (1981a, 1985) using the reciprocity theorem. In this paper a new strict method for
calculating the anisotropic Hall coefficient using the Green function is proposed. After
deriving the formula for the anisotropic Hall coefficient in the continuum we will pass
to a two-component medium. Let us consider a disordered system whose discontinuity
scale is larger than the free path of charge carriers and the cyclotron radius, the radius,
in turn, being smaller than the free path. Such a medium permits the introduction of the
local conductivity tensor (1) and the Hall coefficient R(r). Let the sample be a cube with
the side length L, , L,,, L,,, where x = x;, y = x, and z = x3. We apply the electric
field with potential —g,,(r) where m = 1, 2, 3. We will consider weak magnetic fields
and solve the problem of calculating the effective Hall coefficient in first order on the
applied magnetic field. If the electric field is directed along the axis m and the magnetic
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field along the axis &, the equation for the projection of the total current on the axis z in
the tensor form is written as

Far) = O (NV 0, (r) + 8540 (F)H 0, (F)V .0, (FR(F) 4)

where £,is an antisymmetric tensor, the recurrent subscripts are summed, the boundary
conditions on the potential are @,,(r)|,er = £x,,, and [ is the boundary surface of the
sample.

Let us expand the solution into a series in the quadratic field term

J() =do(r) + i1 (r) + O(H?) Pmlr) = @um(r) + @1u(r) + O(H?) ()

JEa(r) = 0 (NV @0 ()

JTa(r) = 0 (V@1 m(r) + A0 (") V@0 (7)

where we introduce
Ap(r) = EuOns(NH 0, (NR(r).

The boundary conditions for the potentials in the first and zeroes approximations are
Po.m(M|rer = Ex,y @1.m()]rer = 0.

Using the equations Vjy(r) = 0 and Vj,(r) = 0 the system (6) can be rewritten in the form
Volow (Ve @om(n)] =0
Voo Vi@ 1w (D] = ~Va[Au )V @om(n)]-

Here we introduce a new function ¢, (¥) — Ex,, which has zero boundary conditions
but is characterized by a more complex equation

(6)

)

Vn[ank (r)vk (Pém (r)] = _Vn[onk(r)vkExm] (8)
and permits a Green function G(r, 7) solution
Vn[ank(r)vkc(rer,)] =6(r'— ') G(r, "')lrer =0 G(r, r') = G(r', )
Pom) = =| Gr.rWilow()ViEx} V" ©)
v

= Ef O (F Y60V, G(r,r)dV'.
"
here Vix, = 8%, 8% is the Kronecker delta.

The last integral is obtained through integration by parts taking into account zero
boundary conditions for the Green function. The transition to the potential in zeroth
approximation yields the equation

Bom() = By +E | 0,6l r") AV’ (10)
v

and makes it possible to calculate the current density in the zeroth approximation (6):

j8() = 0w (NEST + E j O () (P IV G(r, 1) AV, (11)
y

This equation permits computation of the integral of the Green function and is thus of
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primary importance for both the Hall current and the thermal current, which will be
similarly obtained below, and therefore we shall rewrite it in a more convenient form,
viz.

f O (N)Om(r WV G(r, ') AV = E7HEu(r) = (). (12)
v

Now we must do the first approximation calculations of the potential

Pin()= =] GO  gom(r) ]V
,

= | A"V @0 IVRGO AV (13)
v
to be further used to express the mean Hall current

(570 = ¥ B0 + | AIVE Gomlro™ )
v

xf Gps(r YoV, VG(r, r") dV AV’ (14)
v
where we define
() = j JTn(r)dV.
v
The inner integral is to be taken from equation (12); as a result one can obtain

Ty = Gu¥iom) + | AuVi0m(IOR OE 8,0 AV
14

- [ MV @anOIo Qi) av. (15)
v

The first and third components are equal, so they are cancelled. Now substitute the value
of A(¥) from the definition to obtain

(JTwd=E! f &5t 0 (NH g OW(NR(NY 1 @0, (NP i (N8, (1) AV
¥

=E-! j &5 4 J(7) /8 s (DR(F) dV. 0
v

The effective Hall coefficient is very easily expressed so in the case of applying electric
field along axis *x” and measuring Hall coefficient along 'y* we obtain a formulain a scalar
vector form:

RY(p) = | G50)- I8 X AODRE) VIO () (PIEP Y. (17

Thus the problem is reduced to the zeroth approximation calculation of two currents
which can be found from a set of Kirchhoff equations by applying the electric field along
the 'x* and ‘y’ axes.
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The same procedure is applicable for deriving the equation for the magnetic resist-
ance, which it is possible to find for the isotropic case:

Bom(p) = [ GBO)- 1M X JHODRE) VR0 () p). -+ (18)

Here the 0% (p) and o (p) are the effective conductivities along the » and m axes,
and Uy is the potential difference.

It is only the first component that makes this equation difficult to apply, because
percolation theory provides no algorithms for the calculation of the currents j,(r).
However, if the iteration method is used by setting in each node a local Hall EMF equal
to the product of the ohmic current density f,(r) and the Hall coefficient of this node,
then the problem can be simplified considerably through use of the model of an infinite
cluster with special points (Skal 1987). The model will be reported in detail below (see
section 7); the ‘active points’ of the EMF are found at the maxima of the integrand in (17)
and held responsible for those Hall currents that pierce the sample and generate the
outside Hall current; the feature of the *hot points’ of the conductivity is that nearly all
the Joule heat is released there. These two types of ‘special points’ affect the Hall effect
in different ways: the former are responsible for the effective EMF, while the latter are
in charge of the cyclic Hall currents inside the sample because they are associated with
heavier ohmic current flows and larger focal Hall EMF values. The total Hall current can
be found only through use of a model with ‘special points’ The number of these points
over the cntical interval is smail, so that at the threshold there remains a single point of
finite volume, which reduces the number of iterations substantially.

The matter of primary importance for phase transitions is the appearance of new
‘special points’ described by the index law. Equation (18) makes it clear that the points
where the integrals of the first and third components take maximum values are ‘special’
magnetic points, and by assigning Hall EMF values to these points we can calculate the
current density in a second approximation.

3. Calculation of the anisotropic Seebeck coefficient

Let us assume that the mediuin can be described by thermal conductivity tensor £(r) of
the form (1) and by the tensor Seebeck coefficient d@(r), and use the Green function
method again. Let us write the system of equations for projections of the current density
and the thermal flux u(r) onto the axis along which the electric field is directed:

Jnk#) = Opu (FIV @ (1) = Oy (F) ey (r)V T (r)
U (1) = —Km NV T(r) + @y (R0, (N TNV @ (7).

The boundary conditions on the potential are established by the fact that opposite edges
of the sample are connected and their temperatures are 7' and T,.
Using the equalities Vj(r) = 0 and Vu(r) = 0 we can rewrite the system in the form

Vol O (NIVi@(r) = Oy (N (NV,T(r)] = 0
Vol =Ko (VT () + @i (o (NT (DY, @(r)] = 0.

In order to show that in first order in terms of a(¥) the second term in the first equation

(19)

(20)
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can be neglected, which helps us calculate the temperature Ty(r) from the set of Kirchhoff
equations, we will rewrite the system in the first and zeroth approximation as

V[-R()VT,(N] =0

V[6(nVeo(n] =0

V[6(rVe . (r)] = V[6(na(r)VTo(7)]
VIR(VT(r)] = VI@(ne(NTo(r)Veo(r)].

It follows from (21) that @y(r) = 0 owing to the boundary conditions on the potential.
The system (22) makes it possible to express @ ,(r) through the Green function:

(21)

(22)

() = j G(r, r')¥} [o4 () PV 4 To(r)] AV
y

== f O (r ey (r Vi To(ViGr. r') dV". (23)

Now we have all we need to calculate the thermocurrent:
(j%) = —{0wa,V,To) + {ouV.0,)

= —({oua,V,Ty) “J’ X (P IV 5, To(r")
v

X J’ g (r'o, (VY G(r,rYdvdy’, (24)
v

The inner integral can be calculated from equation (12), which gives us two com-
ponents; one of them will be reduced with the first line term of the formula, while the
other will take the form

()= ~E7 [ mOVuTo)ih.0) AV, @)
‘l
The Seebeck coefficient can be easily expressed through the thermocurrent:

&(n)lit(r) - VTo(r)1dV

¢ _ v e e -
“P) = R PNT, ~ THEL? )

With the help of the Heaviside function we find
a(r) = a,6,(r) + @, 82(r)

for the two-component medium, where 6 ,(r) is 1 for the first component and 0 for the
second, and 8,(r) = 1 — 6,(r). After transforming the three-dimensional integral into a
surface integral we obtain

a*(p) = | a()Gb()- o) &S/l (GNT, ~ TELY] @7
N

where n is the normal to the component interface 5.
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4. Conductivity

The effective anisotropic conductivity was computed for a simple cubic lattice whose
bonds are provided by a random mixture of component 1 that has the tensor of electric
conductivity (1) preset with probability p, and component 2 whose o, has the probability
1 — p. The system of Kirchhoff equations was solved by iteration, with the results shown
in figures 1-3. Figure 1 corresponds to the quasi-two-dimensional flow of the current
o, = 0.01 and figure 2 to the three-dimensional flow of the current o, = 1; the electric
field is directed along the axis z. The broken curves shown on figures 1 and 2 (curves
oi(a, p) where i = x, y) divide the families into the lower parts with anisotropy par-
ameters exceeding unity and the upper portions with the parameter less than unity.
The biaxial anisotropy combines both extreme trends a — wand @ — 0Qof the uniaxial
anisotropy. This explains the introduction (Skal 1987) of a new puncture threshold p,,,
which unlike other thresholds is not universal and occurs in finite samples only, its value
approaching I with larger volume of the samples. This threshold is characterized by the
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concentration when the first continuous conductive component filament emerges for the
first time, connecting the opposite edges of the sample. Figure 3 shows a family of curves
for different concentrations p; as p increases a number of curves

A(a, b,p) = 05 (a, b, p)/05"(a, b, p)

are shown which are divided by the puncture threshold into those with a piateau and
those going up unboundedly. The curves 1-5 on figure 3 reach a limiting plateau for
sufficiently larpe a. The larger the p, the larger is the value of the curve reached at the
plateau. For infinite samples all the curves come to a plateau because at p ~ 1 there
always occurs a finite cluster of non-conducting component against which the continuous
conductive component filament inevitably thrusts. The current flowing atong this line
must bypass this cluster to meet the other component, which will assure the attainment
of the plateau. Over the concentration interval the conductivity ‘sees’ two thresholds,
viz. py. and py at a — 0 or p3. and p, at a — = (the subscripts denote the dimensionality).
With the biaxial anisotropy all three thresholds participate at the same time, i.e. the
quasi-three-, two- and one-dimensional ones over the intervals pai <p <ps,
P2 <p <ppand p > p,, respectively.

In order to study the critical behaviour of the kinetic coefficients, it is necessary to
find limit curves (Skal 1987) that do not depend on the parameters of the anisotropy.
Indices can be calculated only on such curves because the limit transitionlim A(«, b, p) =
f(p), with a— 0, b— =, occurs at finite parameters, which are smaller the closer they
are to the threshold. In order to understand what new indices exist in the biaxial
anisotropy a— %, b— > and a—+ 0, b— 0 are up to a constant coincident with the
uniaxial anisotropy curves g — 0 and a — . Therefore there remains a single new case
of a— 0, b— = to which corresponds the critical index

lim Ala.b.p)=f(p) =1+ const(p ~ pc)" (28)
a—s 0. p—sx
where A, = 0.3 = 0.05.

The effective-medium theory is known to be valid (Bernasconi 1974) in the aniso-
tropic and isotropic cases away from the critical interval. However, unlike unsoph-
isticated formulae for an isotropic medium, transcendental equations are involved in
calculation of the anisotropic conductivity of each concentration point., and it is only
when the linear approximation is applicable that explicit formulae can be obtained for
the strong anisotropy limit. The formulae permit a conclusion on the existence of
ptateaux, which can be seen in figure 3, but the quantitative comparison of numerical
data with the formulae is hindered by the fact that the theory describes infinite samples
only.

The finite samples can also be described by simple equations similar to those obtained
for uniaxial anisotropy (Skal 1987). Let us consider a cubic lattice each edge of which
comprises nodes. The probability of the line with only component 1 nodes along the
anisotropic axis b— o is p". Because the problem in question is planar, the number of
such lines is Np™, and when this value becomes equal to unity, the puncture threshold
is attained, thereby validating the formula (Np, = 1; p, = N™)

1&1;1 ot (a, b, p) = o, exp[-N(1 - p)] l-p<l (29)
a-+0.bo=x
which describes the deviation from the plateau and shows it to be smaller the closer it is
to the concentration threshold.
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5. Computed simulation of the Hall effect

The difficulties in interpretation of experimental data on the Hall effect on composite
materials stem from the fact that the effect ‘sees’ the dimensionality of the space. Let us
dwellon thisin some detail. The three-dimensional space in the isotropiccase is described
by (Skal 1981a) (R*"(p)) ' ~ R,P(p). Away from the threshold the Hall coefficient
should be proportional to the inverse of percolation probability while near it the curves
hawve critical indices g = 0.6 and 8 = 0.3 respectively. This relationship naturally reflects
the physical meaning of the phenomenon, i.e. the inverse value of the Hall coefficient
provides information on the number of current carriers, which corresponds in the
problem under discussion to the bound part of component 1 P(p). The difference in the
critical indices is related precisely to the fact that the Hall effect does not involve its
‘dead ends’ which belong to the bound compound, i.e. to P(p); and because the volume
responsible for the Hall effect is diminished, the critical exponent increases g > . The
disappearance of ‘dead ends’ away from the threshold makes the curves similar and
proportional.

The same effect apparently has to happen in the two-dimensional space but it does
not, which represents a peculiar feature of the phenomenon. While the conductivity and
the Seebeck coefficient change little, the threshold moves from p;, = 0.33 in the simple
cubic lattice to p,. = 0.59 in the square one, causing a shift of the curves that pass
throughit. The critical indices change insignificantly, for example, as regards the electric
conductivity, £, = 1.6 and #; = 1.1.

Similar to the quantum Hall effect, the two-dimensional space shows a step at p.

Rl P >Pc
R(p, H) = { (30)
R, P<p.

where R, and R, are the local Hall coefficients for the components 1 and 2 respectively.

Thus when the Hall coefficient no longer provides information on the share of the
volume of the conducting medium it becomes indicative of the dimensionality. A smooth
transition between these extremes can be observed in thin composite films when, de-
pending on the film thickness, the experimental data can range from P(p) to a constant,
which makes the data so difficult to interpret.

The critical behaviour of the Hall effect can be described by the same equation (28)
as used for conductivity. It is only natural to ask here how many independent indices
appear in this case. It appears that by directing the magnetic field along each coordinate
axis one can obtain three limiting curves. Depending on the field direction about the
anisotropy axes, the Hall coefficient demonstrates a quasi-two-dimensional pattern
H 1 a and a quasi-three-dimensional behaviour in the plane H || a and H L (a, b) per-
pendicular to a plane (g, b). Both three-dimensional cases have an identical limiting
curve because the ratios of the component conductivities in the planes that are per-
pendicular to the field are identical. Thus there exist only two independent situations
shown in figures 4 and 5, to which the new critical index is related:

I Ry .(a,b,p)
im ———
a—0,b—ro0 R?ﬂ]a(“? b’P)
where £ = 0.15 £ 0.05.

Figure 4 demonstrates a smooth transition from the quasi-two-dimensional behav-
iour (curve 1: @ = 0.01, b == 1) with a levelling out after the two-dimensional threshold,

=1+ const(p — p.)* (31)



1530 A Skal and | Grebnev

Hia ) [ —
Hila,d)

L)

R ab p)/R,

[ ]
[TYE L

: N 1 : . T
03 0.5 0.7 0.9 3 0.5 0.7 0.9 1.0
I P
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curve 1, I;curve 2, 5: curve 3, 25, (a,B):curve L,a=b=1curve2,2a=05,b=35;
curve 3, a=0.15.b = 10.

to the behaviour under conditions of a heavy magnetic field when the conductivity grows
along the axis b, while the Hall coefficient tends to the three-dimensional value but never
exceedsit, The reverse takes place in fipure 5 where curve 1 corresponds to the isotropic
case a = b = | while the growth of the anisotropic parameters a — 0, b — % resultsin a
downward trend of the curves.

6. Computed simulations of thermopower

While the special feature of the Hall effect is its dependence on dimensionality, the
essential point for thermopower studies is the selection of an appropriate model. Both
the electric conductivity and the Hall effect can be investigated on a metal-insulator
model, which gives a trivial solution for the thermopower. Although this result does
bring to mind the two-dimensional Hall effect, there is a difference in that in the Hall
effect the total longitudinal and transverse current intersect, while in thermopower
the current flows in component 1 only, component 2 making no contribution to the
generation of the thermopower. The same transpires from equation (27), which shows
the value of the current density projection on the normal to the component interface to
be identically zero at o, = 0. Therefore it is necessary to find a model representing the
conductivity in the two components, which was not taken into account by Troades
and Bideau (1983). In Skal (1987) it was shown that when the ratio of the thermal
conductivities of the components is close to 1, the critical exponents of the electric
conductivity and the thermopower are equal, but when this ratio grows, the thermo-
power develops a new index whose pattern is characteristic of the anisotropic perco-
lation: the indices coincide in the first extreme case and differ in the second one.

The influence of the anisotropy on the effective Seebeck coefficient and on the
electric conductivity in the two-component system can be seen from figures 6 and 7
showing these kinetic coefficients foridentical local parameters. One common regularity
must be emphasized: correlation of the resistance and Seebeck coefficient permits
the conclusion that the thermal conductivities of the components are close, while no
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Figure 6. Effective Seebeck coefficient &"(a, b, Figure 7. Effective electric conductivity G*"(a. p)
p) versus concentration at o, = 0.01 and at various  with the same q parameters as in figure 6.

values of a and b: oa,b,p), a=aj0, b=

KJ/Kk,, 0,=0.01; curve 1, a=0.014, b=100;

curve 2, @ = 0.033, & = 0.666; curve 3, a = 0.25,

b= 0.0666; curve 4,2 = 0.8, b = 0.05,

correlation is evidence of a wide gap in this parameter. This can also be seen from the
accurate formuia for the isotropic thermopower whose analogue for the Hall effect is

x“(p)/o°T(p) — K\ /0
K3/0; — K1 /0y
This equation is valid in biaxial anisotropy for the particular case of equal ratios of the

electric and thermal conductivities of the components.
The critical behaviour of the thermopower can be described by
lim «5"(a, b, p)/a5(a, b, p) =1 + const(p — p)™ (33)

a=+{} b=

a*(p) = (o, — o)) + a. (32)

where m = 0.3 = 0.05 when the ratio of the thermal conductivities of the component is
small; otherwise the index can be expected to be different.

The critical behaviour of the Hall effect is associated only with large ratios of
the components’ electric conductivities ¢,/0, — = and does not depend on local Hall
coefficients. The essential point for the thermopower is that the o,/0, or the ¢, /o, and
K,/k, ratios tend to infinity, but the critical behaviour of the thermopower does not
depend on local Secbeck coefficients of either component.

7. Infinite cluster model

A matter of great interest is how the infinite cluster model changes in biaxial anisotropy.
At present there exist a number of such models including the one-dimensional chain
(Skal and Shklovskii 1974, De Gennes 1976), fractal (Kirkpatrick 1977}, drop (Coniglio
1981) and some others. The fractal and drop models have proved to be useful in
renormalization group calculations. But in order to answer the questions of what a
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disordered system actually looks like, if there is any regularity in this chaos, what
happens in the critical interval over the concentrational axis, and what phenomena take
rise in transition, use should be made of the model of ‘special’ points (Skal e a/ 1982,
Skal 1987). The answer is that although the infinite cluster has an infinite number of
properties and is seen differently by each of its Kinetic coefficients, its common feature
(Skal 1982) is the superlattice each side of whose cell is proportional to the correlation
radius of the infinite cluster. All the reported models refer to the metal-dielectric phase
transition at p > p. when an infinite cluster has already been formed and became
a parameter of the transition order, but there is not a single model for the metal-
superconductor transition at p < p, that would permit the determination of the order
parameter of this transition. However, it is possible to develop a unified cluster model
that can help us to find a unified order parameter for the two transitions, understand
their similarities and differences, and clarify the phenomena occurring in the transition.
Each kinetic coefficient sees the transition in its own way whether a superlattice is there
or not, but it can be asserted that when there are *special points’ a superlattice exists and
it does not exist when the special points are absent, In terms of the electric conductivity
the infinite cluster consists of two parts, viz. the ‘hot points’ spaced at the correlation
radius apart and concentrating all the resistance, and the superlattice formed by com-
ponent 1 physically and by the ideal metal in the model. Now the question is what
superlattice can take place if the infinite cluster has not come into existence at p < p..
The critical interval is very small, and when the concentration approaches it from the
P < p. side, the infinite cluster can be said to have taken shape. Further concentration
of the critical interval changes the cluster’s capacity slightly, affecting only the ‘hot
points’, whose share is also vanishingly small, but it is precisely the ‘hot points’ that
make the difference between the pre-threshold and post-threshold transitions, which is
that the points are made up by component 2 at p < p. and by component 1 at p > p..
Thus a new two-component cluster for the metal-superconductor transition is obtained,
which becomesits order parameter, Hence the difference in clusters makes the transition
different.

Because there have not yet been any references in the literature to a two-component
cluster it is necessary to dwell on its definition. ‘Hot points’ are not all thin interlayers
of component 2 between large clusters of component 1, but only those where a large
amount of Joule heat is released; their number decreases as the threshold is approached,
because component 1 issubstituted for component 2, the ‘hot points’ get cold, and finally
at the threshoid there is only one last ‘hot point’ of component 2 which becomes the first
‘hot point’ of component 1, resulting in the formation of a one-component infinite
cluster. Thus a two-component cluster is constructed by the electric conductivity; “hot
points’ are arranged at approximately the same locations before and after the threshold.
It is unimportant whether these points are located at the bonds or at the superlattice
nodes; one alternative can be considered the other’s dual.

How does the transition take place for other transport coefficients? The superlattice
rematns the same for the thermopower, with only the name of the points changed to
thermopower ‘active points’. These exist at high thermal conductivity ratios, dis-
appearing at low ones and then making the notion of superlattice inapplicable.

In terms of Hall effect, ‘active points’ of the Hall EMF arise in geometrically different
locations, these points being responsible for generation of nearly all the Hall effect. In
order to unify the superlattice for three transport coefficients, we should place the
‘active’ Hall EMF points at its nodes and the ‘hot electric conductivity points’ at its bonds.

What is the effect of the anisotropy on the superlattice? In uniaxial anisotropy (Skal
1987) the superlattice is compressed along the 2 — 0 axis and expanded along the a — =
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axis; biaxial anisotropy causes a simultaneous action of these processes, which results in
concentration of ‘hot points’ along the a — 0 axis and a reduction of their number per
unit length along the axis b— .

To conclude, it should be stressed that for high-temperature superconductivity it is
essential to determine whether the conductivity in the transition occurs over a plane or
along filaments in three-dimensions. This can be calculated through use of the values of
critical indices of transport coefficients and due to universality at phase transitions.
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