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Leningrad. USSR 
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Abstract. Second-order phase transitions are studied for a biaxial anisotropic disordered 
system composed of randomly distributed metal and non-metal regions, the former having 
tensor-type conductivity along the principal axes. Integrals are derived for the anisotropic 
Hall and Seebeck coefficients using Green functions. Computer calculationsshow that near 
the percolation threshold, the decreaseof the biaxial anisatropyof the effective conductivity 
and Hall andSeebeckcoefficients isdescribed bynewcriticalexponents. A modelof'special 
points'ofthe biaxial anisotropicinfinile cluster above the threshold and the two-comvonent 
infinite cluster below the threahuld is developed. 

1. Introduction 

This paper is a sequel to and a further development of Skal(l981 a, b, 1982a. 1985,1987) 
and Skal era1 (1982) dealing with percolation in isotropic and anisotropic media. 

Natural uniaxial anisotropy isdemonstrated, for example, by a layered crystalsimilar 
to graphite, or by quasi-one-dimensional crystals of the tetracyanoquinodimethane 
(TCNQ) type. If there is a strong magnetic field along another axis, these crystals become 
biaxial anisotropic ones. 

Letusstart withasimplebiaxialmodelofanisotropyandfindout what newexponents 
result from it. A random two-component mixture has a geometrically isotropic dis- 
tribution of components, one of which is characterized by the tensor 

0 0  

6 ,  = (.' uy 0 1 a =  a,/o, b = oy/oz (1) 
0 0 uz 

and the other by the scalar U*, where a and b are the anisotropic parameters. 
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Uniaxial anisotropic percolation was first studied by Shklovskii (1978) who used the 
SSDG (Skal and Shklovskii 1974, De Gennes 1976) idealized superlattice model, with the 
nodes connected by one-dimensional links, and introduced the critical exponent A: 

where u ; ~ ~ ( P )  and o;"(p) are the effective conductivitiesalongthe respective coordinate 
axes, U is the exponent of the infinite cluster correlation radius, which is equal to the 
distance between the superlattice nodes, and 5 is the exponent of the one-dimensional 
links thatconnect thesuperlatticenodesalong thecluster. With thede Gennespostulated 
value 5 = 1 for all dimensionalities, and with universally accepted w Z  = 1.3 and v 3  = 0.8 
one can obtain I ,?  < 0 and A 3  = 0.2 (here and below we use the subscripts according to 
the dimensionality of the space). However, I , ,  < 0 is not true because the anisotropic 
effect decays at a faster rate than the conductivity: Vannimenus and Knezcvic (1984) 
obtained vdA2 = 0.306 and v3/& = 0.3; Sarychev and Vinogradov (1983) found A2 = 
0.9 and A3 = 0.3; Straley (1980) calculated I ,  = 1 for the Cayley tree and A = 3 for a high- 
dimensional limit; and Lobb er a1 (1981) found vz/AZ = 0.67. 

If a tends to 1, then the left part of formulae (2) also tends to 1 but the second term 
in the right part of (2) does not disappear and so it cannot be used for all values of a. Skal 
(1987) suggested the existence of two universal curves that characterize the transition to 
the quasi-one-dimensionaIf,(p) and the quasi-two-dimensional f2(p) states, each with 
a critical exponent of its own: 

whereI,31 = 0.45 2 0.05 andA,, = 0.15 2 0.05arethequasi-exponentsofthequasi-one- 
and two-dimensional transitions, respectively. The number of exponents increases with 
dimensionality; for example, in two-dimensional systems there is only one exponent A z .  
Comparision of this result with other authors' findings presents difficulties because the 
data in the literature refer only to a single exponent in two and three dimensions. 

2. Calculation of the anisotropic Hall coefficient 

The formula for the Hall coefficient in an isotropic disordered system was obtained by 
Skal(1981a, 1985) using the reciprocity theorem. In this paper a new strict method for 
calculating the anisotropic Hall coefficient using the Green function is proposed. After 
deriving the formula for the anisotropic Hall coefficient in the continuum we will pass 
to a two-component medium. Let us consider a disordered system whose discontinuity 
scale is larger than the free path of charge carriers and the cyclotron radius, the radius, 
in turn, being smaller than the free path. Such a medium permits the introduction of the 
local conductivity tensor (1) and the Hall coefficient R(r ) .  Let the sample be a cube with 
the side length L,, , L,,, L,,, where n = x l ,  y = xz and z = x 3 .  We apply the electric 
field with potential -p?,(r) where in = 1,2. 3. We will consider weak magnetic fields 
and solve the problem of calculating the effective Hall coefficient in first order on the 
applied magnetic field. If the electric field is directed along the axis M and the magnetic 
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field along the axis k, the equation for the projection of the total current on the axis n in 
the tensor form is written as 

i:: ( r )  = unk ( r ) V k p m ( r )  + & ~ ~ / u " ~ ( r ) ~ k u l , ( r ) V , q ~ ( r ) R ( r )  (4) 
where &,,(isan antisymmetric tensor, the recurrent subscripts aresummed, the boundary 
conditions on the potential are qm(r)Irer = Ex,, and r is the boundary surface of the 
sample. 

Let us expand the solution into a series in the quadratic field term 

A r )  =j&) + h ( r )  + o ( H z )  

K n ( r )  = u n k ( r ) V k q d r )  + L,(rF' ,q", , (r)  

q m ( r )  = qu.m(r) + ql ,m(r)  + O ( H 2 )  ( 5 )  

( 6 )  
= unk(r)Vkqo.,(r) 

where we introduce 

L k )  = E , . ~ P ~ ~  (r)Hk M ) R ( r ) .  
The boundary conditions for the potentials in the first and zeroes approximations are 

qa.m(r)lrEr = Ex, ~7 1.m ( r )  I re r = 0. 
Using the equations Vjo(r) = 0 and V j l ( r )  = 0 the system (6) can be rewritten in the form 

Vn[undr)VkvO.m(r)l  = 0 

V n  [onk (40 ,  9, 1.m ( r ) l =  - V n  [ M r ) V , q u . m  ( . ) I .  (7) 

Here we introduce a new function qb,, ,(r)  - Ex, which has zero boundary conditions 
but is characterized by a more complex equation 

vn l U n k  vim (41 = -Vn [unk (r)vk Ex, 1 (8) 
and permits a Green function G ( r ,  r )  solution 

Vn[unk(r)VkG(r,  r ' ) ]  = 6 ( r  - r ' )  G ( r ,  r ' ) lrEr = 0 G ( r ,  r') = G(r ' ,  r )  

q & m ( r )  = -1 G ( r ,  r ' )V; [unk(r ' )V;Exk]  dV'  (9) 
V' 

= E i  u n k ( r ' ) 6 r V ; G ( r ,  r') dV'. 
V' 

here 0;xg = 
The last integral is obtained through integration by parts taking into account zero 

boundary conditions for the Green function. The transition to the potential in zeroth 
approximation yields the equation 

6 r  is the Kronecker delta. 

qo . , ( r )  = Ex,  + E J  u",(r')V;,G(r,r')dV' (10) 
V '  

and makes it possible to calculate the current density in thc zeroth approximation (6): 

jE.(r) = u n k ( r ) E 6 r  + E unk(r)u,,(r')VkV;C(r,r') dV'. (11) 

This equation permits computation of the integral of the Green function and is thus of 
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primary importance for both the Hall current and the thermal current, which will be 
similarly obtained below, and therefore we shall rewrite it in a more convenient form, 
viz. 

A Skal and I Grebneo 

unk(r)um(r')VkV; G(r. r ' )  dV' = E-'jZn(r)  - unm(r) .  (12) 1,. 
Now we must do the fust approximation calculations of the potential 

ups(r')unI(r)VIV; G ( r ,  r ' )  dVdV' J" 
where we define 

(14) 

E.&, iC ( r ) j L  (r)R(r) d V. (16) 
J v  

= E-1 

The effective Hall coefficient is very easily expressed so in the case of applying electric 
field along axis 'x' and measuring Hall coefficient along 'y' we obtain a formula in a scalar 
vectnr form: 

R e f f ( p )  = 1 ( j ; ( r ) .  [ H  X j ; ( r ) ] ) R ( r )  dV/o","(p)u:"(p)E2HV. (17) 

Thus the problem is reduced to the zeroth approximation calculation of two currents 
which can be found from a set of Kirchhoff equations by applying the electric field along 
the 'x' and 'y' axes. 

\' 
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The same procedure is applicable for deriving the equation for the magnetic resist- 
ance, which it is possible to find for the isotropic case: 

APAP) = 1 o‘w). [H X . ~ W I ) W  d v i ~ i o ~ ( p ) o ~ ( p ) .  (18) 
V 

Here the u;ff ( p )  and u$f (p)  are the effective conductivities along the n and m axes, 
and U, is the potential difference. 

It is only the first component that makes this equation difficult to apply, because 
percolation theory provides no algorithms for the calculation of the currents j , ( r ) .  
However, if the iteration method is used by setting in each node a local Hall EMF equal 
to the product of the ohmic current density jn(r) and the Hall coefficient of this node, 
then the problem can be simplified considerably through use of the model of an infinite 
cluster with special points (Skal 1987). The model will be reported in detail below (see 
section 7); the ‘active points’of the EMF are found at the maxima of the integrand in (17) 
and held responsible for those Hall currents that pierce the sample and generate the 
outside Hall current; the feature of the ‘hot points’ of the conductivity is that nearly all 
the Joule heat is released there. These two types of ‘special points’ affect the Hall effect 
in different ways: the former are responsible for the effective EMF, while the latter are 
in charge of the cyclic Hall currents inside the sample because they are associated with 
heavier ohmic current flows and larger local Hall EMF values. The total Hall current can 
be found only through use of a model with ‘special points’ The number of these points 
over the critical interval is small, so that at the threshold there remains a single point of 
finite volume, which reduces the number of iterations substantially. 

The matter of primary importance for phase transitions is the appearance of new 
‘special points’ described by the index law. Equation (18) makes it clear that the points 
where the integrals of the first and third components take maximum values are ‘special’ 
magnetic points, and by assigning Hall EMF values to these points we can calculate the 
current density in a second approximation. 

3. Calculation of the anisotropic Seeheck coefficient 

Let us assume that the medium can be described by thermal conductivity tensor R(r) of 
the form (1) and by the tensor Seebeck coefficient &(r),  and use the Green function 
method again. Let us write thesystem ofequationsfor projectionsofthe current density 
and the thermal flux u(r) onto the axis along which the electric field is directed: 

(19) 
im(r) = o m k ( r ) V k ~ ( r )  - umk(r)akr(r)VrT(r) 

U m ( r )  = -Kmk(r)VkTW + a d r b d r )  W ) V , d r ) .  

The boundary conditions on the potential are established by the fact that opposite edges 
of the sample are connected and their temperatures are T ,  and T,. 

Using the equalities Vj(r) = 0 and Vu(.) = 0 we can rewrite the system in the form 

(20) 
Vm[umk(r )Vk~(r )  - umk(r)a*,(r)VtT(r)l= 0 

Vm[-Kmk(i)VkT(r)  + ~ m k ( r ) u k , ( r ) ~ ( r ) V , ~ ( r ) l  = 0. 

In order to show that in first order in terms of e ( r )  the second term in the first equation 
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can beneglected, which helpsuscalculate the temperature To(r) from theset ofKirchhoff 
equations, we will rewrite the system in the first and zeroth approximation as 

A Skai and I Crebnev 

V[-R(r)VT,(r)]  = O  
(21) 

(22) 

V [ W V v o ( 4 1  = 0 

v[%)vv 1(4l= V [ ~ W ( ~ ) V T U ( ~ ) I  

V[4r)VTI  (41 = V [ c i . ( r ) B ( r ) T ~ ( r ) V v ~ ( r ) l .  

It follows from (21) that vU(r )  = 0 owing to the boundary conditions on the potential. 
The system (22) makes it  possible to express q l ( r )  through the Green function: 

= -I u , ~ ( r ‘ ) . ~ ~ ( r ’ ) V ~ T o ( ~ ) V ~  G(r,  r ’ )  dV’. 

Now we have all we need to calculate the thermocurrent: 

(jf) = -(uP,.,,V,Td + (ukrV,q,) 

x 1 uk(r’)uk,(r)VfV; C(r .  r ’ )  dVdV’. (24) 
V 

The inner integral can be calculated from equation (12). which gives us two com- 
ponents; one of them will be reduced with the first line term of the formula, while the 
other will take the form 

The Seebeck coefficient can be easily expressed through the thermocurrent: 

f W ) l i d ( r ) .  VTo(r)l dV 

With the help of the Heaviside function we find 

4 r )  = ElBl(r)  + .282(r) 
for the two-component medium, where B l(r) is 1 for the first component and 0 for the 
second, and O,(r) = 1 - OI(r) .  After transforming the three-dimensional integral into a 
surface integral we obtain 

where n is the normal to the component interface S .  
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Figure 2. Effective electric conductivity versus Figure 3. Functions A ( a , p )  at b = 0.01 versus (I at 
concentration at a> = 1, G:'((n,b,p). i = x .  y:  variouspconcentrations:curve 1,0.45;curve2,0.5: 
Curve 1. G:"(o.o1, 1.p): CUNe 2, C:"(0.5,5.p): 
curve 3, G:"(l, 1.p); curve 4, G:f'(0.5.5.p); 
curve 5. C:"(O.I, 10.p); curve 6 ,  G:" 
(0.5.50.p). 

CUNe3.0.6:CUNe4.0.7:CUNe5.0.~CUNe6,0.95. 

4. Conductivity 

The effective anisotropic conductivity was computed for a simple cubic lattice whose 
bonds are provided by a random mixture of component 1 that has the tensor of electric 
conductivity(1)preset withprobabilityp, andcomponent2whose  hasth the probability 
1 -p.Thesystemof Kirchhoffequationswassolvedbyiteration,with theresultsshown 
in figures 1-3. Figure 1 corresponds to the quasi-two-dimensional flow of the current 
U, = 0.01 and figure 2 to the three-dimensional flow of the current U; = 1; the electric 
field is directed along the axis z .  The broken curves shown on figures 1 and 2 (curves 
u;"(a,p) where i = x ,  y )  divide the families into the lower parts with anisotropy par- 
ameters exceeding unity and the upper portions with the parameter less than unity. 

The biaxialanisotropycombines bothextreme trendsa-. manda-t Ooftheuniaxial 
anisotropy. This explains the introduction (Skall987) of a new puncture thresholdp,, 
which unlike other thresholds is not universal and occurs in finite samples only, its value 
approaching 1 with larger volume of the samples. This threshold is characterized by the 
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concentration when the first continuous conductive component filament emerges for the 
first time, connecting the opposite edges of the sample. Figure 3 shows a family of curves 
for different concentrationsp; a sp  increases a number of curves 

A Sku1 and I Grebneu 

A(a,b,p) = uE'((a,b.p)/uL"(a,b,p) 

are shown which are divided by the puncture threshold into those with a plateau and 
those going up unboundedly. The curves 1-5 on figure 3 reach a limiting plateau for 
sufficiently large a. The larger thep, the larger is the value of the curve reached at the 
plateau. For infinite samples all the curves come to a plateau because at p - 1 there 
alwaysoccurs a finite cluster of non-conductingcomponent against which the continuous 
conductive component filament inevitably thrusts. The current flowing along this line 
must bypass this cluster to meet the other component, which will assure the attainment 
of the plateau. Over the concentration interval the conductivity 'sees' two thresholds, 
viz.pkandp2,at a +  Oorp,,andp,ata+ ~(thesubscriptsdenote thedimensionality). 
With the biaxial anisotropy all three thresholds participate at the same time, i.e. the 
quasi-three-, two- and one-dimensional ones over the intervals p,c < p  <p2er 
pk < p C pp and p > pr. respectively. 

In order to study the critical behaviour of the kinetic coefficients, it is necessary to 
find limit curves (Skal 1987) that do not depend on the parameters of the anisotropy. 
Indicescan becalculatedonlyonsuchcurvesbecause thelimit transitionlim A(u. b.p) = 
f ( p ) ,  with a - +  0 , b - r  m, occurs at finite parameters, which are smaller the closer they 
are to the threshold. In order to understand what new indices exist in the biaxial 
anisotropy a + x ,  b + x  and n+0, b-0 are up to a constant coincident with the 
uniaxial anisotropy curves a + 0 and a + x. Therefore there remains a single new case 
of a+ 0, b+ x to which corresponds the critical index 

lim A @ ,  b.p) = f ( p )  = 1 + const(p - pe)': (28) 
u-0.b-r 

where h, = 0.3 f 0.05. 
The effective-medium theory is known to be valid (Bernasconi 1974) in the aniso- 

tropic and isotropic cases away from the critical interval. However, unlike unsoph- 
isticated formulae for an isotropic medium, transcendental equations are involved in 
calculation of the anisotropic conductivity of each concentration point. and it is only 
when the linear approximation is applicable that explicit formulae can be obtained for 
the strong anisotropy limit. The formulae permit a conclusion on the existence of 
plateaux, which can be seen in figure 3. but the quantitative comparison of numerical 
data with the formulae is hindered by the fact that the theory describes infinite samples 
only. 

The finite samples can also be described by simple equations similar to those obtained 
for uniaxial anisotropy (Skal 1987). Let us consider a cubic lattice each edge of which 
comprises nodes. The probability of the line with only component 1 nodes along the 
anisotropic axis b -  is$" Because the problem in question is planar, the number of 
such lines is Np". and when this value becomes equal to unity, the puncture threshold 
is attained, thereby validating the formula ( N p ,  = 1; pp = N-") 

lim u:"(a,b,p) = uv exp[-N(1 - p ) ]  1 - p < 1  (29) 
o-0.b-r ' 

which describes the deviation from the plateau and shows it to be smaller the closer it is 
to the concentration threshold. 
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5. Computed simulation of the Hall effect 

The difficulties in interpretation of experimental data on the Hall effect on composite 
materials stem from the fact that the effect ‘sees’ the dimensionality of the space. Let us 
dwellon thisinsome detail. The three-dimensional space in the isotropiccase is described 
by (Skal 1981a) (Ref f (p ) ) - ‘  - R , P ( p ) .  Away from the threshold the HaU coefficient 
should be proportional to the inverse of percolation probability while near it the curves 
have critical indicesg = 0.6 andB = 0.3 respectively. This relationship naturally reflects 
the physical meaning of the phenomenon, i.e. the inverse value of the Hall coefficient 
provides information on the number of current carriers, which corresponds in the 
problem under discussion to the bound part of component 1 P ( p ) .  The difference in the 
critical indices is related precisely to the fact that the Hall effect does not involve its 
‘dead ends’ which belong to the bound compound, i.e. to P(p) ;  and because the volume 
responsible for the Hall effect is diminished, the critical exponent increasesg > p .  The 
disappearance of ‘dead ends’ away from the threshold makes the curves similar and 
proportional. 

The same effect apparently has to happen in the two-dimensional space but it does 
not, which represents a peculiar feature of the phenomenon. While the conductivity and 
the Seebeck coefficient change little, the threshold moves fromp,, = 0.33 in the simple 
cubic lattice to pk = 0.59 in the square one, causing a shift of the curves that pass 
through it. The critical indices change insignificantly, for example, as regards the electric 
conductivity, z3 = 1.6and t2 = 1.1. 

Similar to the quantum Hall effect, the two-dimensional space shows a step at p, 

where R I  and R2 are the local Hall coefficients for the components 1 and 2 respectively. 
Thus when the Hall coefficient no longer provides information on the share of the 

volumeofthe conductingmedium it becomes indicative of thedimensionality. Asmooth 
transition between these extremes can be observed in thin composite films when, de- 
pending on the film thickness, the experimental data can range from P ( p )  to a constant, 
which makes the data so difficult to interpret. 

The critical behaviour of the Hall effect can be described by the same equation (28) 
as used for conductivity. It is only natural to ask here how many independent indices 
appear in this case. It appears that by directing the magnetic field along each coordinate 
axis one can obtain three limiting curves. Depending on the field direction about the 
anisotropy axes, the Hall coefficient demonstrates a quasi-two-dimensional pattern 
H I a and a quasi-three-dimensional behaviour in the plane H 11 a and H 1 ( a ,  b )  per- 
pendicular to a plane (a, b) .  Both three-dimensional cases have an identical limiting 
curve because the ratios of the component conductivities in the planes that are per- 
pendicular to the field are identical. Thus there exist only two independent situations 
shown in figures 4 and 5 ,  to which the new critical index is related: 

where k = 0.15 ? 0.05. 
Figure 4 demonstrates a smooth transition from the quasi-two-dimensional behav- 

iour (curve 1: a = 0.01, b = 1) with a levelling out after the two-dimensional threshold, 
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P 

Figure4. Effective Hallmefficient R:FLG(b, p )  versus 
concentration at a = 0.01 and at various values of b :  
CUNe 1. 1: C U N e  2.5: C U N e  3.25. 

Figure 5. Effective Hall coefficient R>&(a. b . p )  at 
ox = I and at various values of a and b (H,  to plane 
(a, b) ) :  curve 1. a = b = 1: curve 2. a = 0.5. b = 5 ;  
curve3.a = 0.15. b = IO. 

to the behaviour under conditionsof a heavy magnetic field when the conductivity grows 
alongtheaxisb, while the Hallcoeflicient tendsto the three-dimensionalvalue but never 
exceeds it, The reverse takes place in figure 5 where curve 1 corresponds to the isotropic 
case a = b = 1 while the growth of the anisotropic parameters a + 0, b + p results in a 
downward trend of the curves. 

6. Computed simulations of thermopower 

While the special feature of the Hall effect is its dependence on dimensionality, the 
essential point for thermopower studies is the selection of an appropriate model. Both 
the electric conductivity and the Hall effect can be investigated on a metal-insulator 
modcl, which gives a trivial solution for the thermopower. Although this result does 
bring to mind the two-dimensional Hall effect, there is a difference in that in the Hall 
effect the total longitudinal and transverse current intersect, while in thermopower 
the current flows in component 1 only, component 2 making no contribution to the 
generation of the thermopower. The same transpires from equation (27). which shows 
the value of the current density projection on the normal to the component interface to 
be identically zero at u2 = 0. Therefore it  is necessary to find a model representing the 
conductivity in the two components, which was not taken into account by Troades 
and Bideau (1983). In Skal (1987) it was shown that when the ratio of the thermal 
conductivities of the components is close to 1, the critical exponents of the electric 
conductivity and the thermopower are equal, but when this ratio grows, the thermo- 
power develops a new index whose pattern is characteristic of the anisotropic perco- 
lation: the indices coincide in the first extreme case and differ in the second one. 

The influence of the anisotropy on the effective Seebeck coefficient and on the 
electric conductivity in the two-component system can be seen from figures 6 and 7 
showing these kineticcoefficientsfor identical local parameters. One common regularity 
must be emphasized: correlation of the resistance and Seebeck coefficient permits 
the conclusion that the thermal conductivities of the components are close, while no 
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P P 
Figure 6. Effective Seebeck coefficient &"(a, b. 
p )  versus concentration at a? = 0.01 and at various 
values of a and b: d'"(a. b ,p ) ,  II = a../a,, b = 
K=/K?. a, = 0.01: curve I ,  a =0.014, b = 100: 
curve 2, a = 0.033. b = 0.666: curve 3. a = 0.25, 
b=0.0666;curve4,a=0.8,b=0.05.  

Figure 7. Effective electric conductivity C.'(a,p) 
with the same a parameters as in figure 6. 

correlation is evidence of a wide gap in this parameter. This can also be seen from the 
accurate formula for the isotropic thermopower whose analogue for the Hall effect is 

This equation is valid in biaxial anisotropy for the particular case of equal ratios of the 
electric and thermal conductivities of the components. 

The critical behaviour of the thermopower can be described by 

lim @:*(a, b,p)/ol;"(u, b , p )  = 1 + const(p -p , )"  
0-0. b- L 

(33) 

where m = 0.3 k 0.05 when the ratio of the thermal conductivities of the component is 
small; otherwise the index can be expected to be different. 

The critical behaviour of the Hall effect is associated only with large ratios of 
the components' electric conductivities u1/u2+ 33 and does not depend on local Hall 
coefficients. The essential point for the thermopower is that the u,/u2 or the ul/u2 and 
K ~ / K ~  ratios tend to infinity, but the  critical behaviour of the thermopower does not 
depend on local Seebeck coefficients of either component. 

7. Infinite cluster model 

A matter ofgreat interest is how the infinite cluster model changes in biaxial anisotropy. 
At present there exist a number of such models including the one-dimensional chain 
(Skal and Shklovskii 1974, De Gennes 1976), fractal (Kirkpatrick 1977), drop (Coniglio 
1981) and some others. The fractal and drop models have proved to be useful in 
renormalization group calculations. But in order to answer the questions of what a 
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disordered system actually looks like, if there is any regularity in this chaos, what 
happens in the critical interval over the concentrational axis, and what phenomena take 
rise in transition, use should be made of the model of ‘special’ points (Skal ef all982,  
Skal 1987). The answer is that although the infinite cluster has an infinite number of 
properties and is seen differently by each of its kinetic coefficients, its common feature 
(Skal 1982) is the superlattice each side of whose cell is proportional to the correlation 
radius of the infinite cluster. All the reported models refer to the metal-dielectric phase 
transition at p >pc when an infinite cluster has already been formed and became 
a parameter of the transition order, but there is not a single model for the metal- 
superconductor transition at p <pc that would permit the determination of the order 
parameter of this transition. However, it is possible to develop a unified cluster model 
that can help us to find a unified order parameter for the two transitions, understand 
their similarities and differences, and clarify the phenomena occurring in the transition. 
Each kineticcoefficient sees the transition in itsown way whether asuperlattice is there 
or not, but it can be asserted that when there are‘special points’asuperlattice existsand 
it does not exist when the special pointsare absent. In termsof the electricconductivity 
the infinite cluster consists of two parts, viz. the ‘hot points’ spaced at the correlation 
radius apart and concentrating all the resistance, and the superlattice formed by com- 
ponent 1 physically and by the ideal metal in the model. Now the question is what 
superlattice can take place if the infinite cluster has not come into existence at p < pc. 
The critical interval is very small, and when the concentration approaches it from the 
p <pc side, the infinitc cluster can be said to have taken shape. Further concentration 
of the critical interval changes the cluster’s capacity slightly, affecting only the ‘hot 
points’, whose share is also vanishingly small, but i t  is precisely the ‘hot points’ that 
make the difference between the pre-threshold and post-threshold transitions, which is 
that the points are made up by component 2 at p < pc and by component 1 at p > pc. 
Thusa new two-component cluster for the metal-superconductor transition isobtained, 
which becomesitsorderparameter. Hence thedifferenceinclustersmakesthe transition 
different. 

Because there have not yet been any references in the literature to a two-component 
cluster it is necessary to dwell on its definition. ‘Hot points’ are not all thin interlayers 
of component 2 between large clusters of component 1, but only those where a large 
amount of Joule heat is released; their number decreases as the threshold isapproached, 
because component 1 issubstituted for component 2, the ‘hot points’get cold, and finally 
at the threshold there is only one last ‘hot point’of component 2 which becomes the first 
‘hot point’ of component 1. resulting in the formation of a one-component infinite 
cluster. Thus a two-component cluster is constructed by the electric conductivity; ’hot 
points’are arranged at approximately the same locations before and after the threshold. 
It is unimportant whether these points are located at the bonds or at the superlattice 
nodes; one alternative can be considered the other’s dual. 

How does the transition take place for other transport coefficients? The superlattice 
remains the same for the thermopower, with only the name of the points changed to 
thermopower ‘active points’. These exist at high thermal conductivity ratios, dis- 
appearing at low ones and then making the notion of superlattice inapplicable. 

In terms of Hall effect, ‘active points’ of the Hall EMF arise in geometrically different 
locations, these points being responsible for generation of nearly all the Hall effect. In 
order to unify the superlattice for three transport coefficients, we should place the 
‘active’ Hall EMF points at itsnodes and the ‘hot electricconductivity points’ at its bonds. 

What is the effect of the anisotropy on the superlattice? In uniaxial anisotropy (Skal 
1987) the superlattice is compressed along the a -+ 0 axis and expanded along the a + 10 
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axis; biaxial anisotropy causes a simultaneous action of these processes, which results in 
concentration of 'hot points' along the a+ 0 axis and a reduction of their number per 
unit length along the axis b- t  CO. 

To conclude, it should be stressed that for high-temperature superconductivity it is 
essential to determine whether the conductivity in the transition occurs over a plane or 
along filaments in three-dimensions. This can be calculated through use of the values of 
critical indices of transport coefficients and due to universality at phase transitions. 
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